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Structural properties and quasiparticle band structure of zirconia

Balázs Králik, Eric K. Chang, and Steven G. Louie
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and Materials Science Division, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720
~Received 27 October 1997!

We reportab initio calculations of the structural and quasiparticle properties of ZrO2, otherwise known as
zirconia. The plane-wave pseudopotential method is used to compute the structural properties of the cubic,
tetragonal, and monoclinic phases of zirconia. Oxygen vacancies in the cubic phase are also studied using a
supercell approach. The structural parameters, including all internal degrees of freedom of all phases, are
relaxed. Excellent agreement is achieved with experiment and with otherab initio calculations available. We
compute the quasiparticle band gaps within Hedin’sGW approximation using the method of Hybertsen and
Louie, and confirm that the quasiparticle approach can be successfully applied to transition-metal oxides if the
core-valence overlap is small. We predict the fundamental gap of pure cubic, tetragonal, and monoclinic
zirconia to be 5.55 eV, 6.40 eV, and 5.42 eV, respectively. Within theGW approximation, the oxygen vacancy
state in the cubic phase is found to be nondegenerate, fully occupied, and well separated from the valence and
conduction bands, positioned 2.1 eV below the conduction band edge.@S0163-1829~98!00112-X#
s
an
d
r

tie

v

h-
e

g
ic

y.
st
a
y
-

ta
to
e-
s
er

it

th

od

d
s
en

the

r-

d

cal-
er-

en
ural
as

i-
ve
Ry
ap-
se,
ns
ix,
g-
ave
-
mic
the

is

pa-
less

tial
ated
I. INTRODUCTION

Zirconia is a technologically very important material1,2

which can be used in practical applications not only a
structural ceramic but also, for example, as an import
component in catalytic converters, in oxygen sensors, an
chemically passivating surfaces. The latter applications
quire a thorough understanding of the electronic proper
of this material.

The electronic and structural properties of zirconia ha
been studied before in detail within theab initio density-
functional-theory–local-density approximation~DFT-LDA!3

andab initio Hartree-Fock4 methods. However, these met
ods are known not to be predictive for excited state prop
ties such as the band gap. Clearly, for an understandin
the chemical and electronic properties of zirconia, a pred
tive calculation of its excited state properties is necessar

The GW approximation for the electron self-energy, fir
described systematically by Hedin5 and first developed as
practical computational approach for real materials by H
bertsen and Louie,6,7 is the state-of-the-art method for pre
dictive calculations of the band gap and of other excited-s
properties. It has yielded excellent results for semiconduc
and insulators.8 However, until recently the method has r
mained to be proven valid ford-electron systems, such a
ZrO2. Motivated by the recent success of Rohlfing, Krug
and Pollmann for CdS,9 we applied theGW method for cal-
culations of the quasiparticle band structure of ZrO2. Our
results, as we will show below, are in good agreement w
the available experimental data.3

The paper is organized as follows. First, we study
structural properties of the phases of ZrO2 within the pseudo-
potential DFT-LDA formalism. The success of this meth
in predicting structural properties of ZrO2 is in itself impor-
tant, because the plane wave pseudopotential metho
simple and very efficient in exploring structural transition
Second, having verified the applicability of the pseudopot
tial plane wave method to the ground state of ZrO2, we then
570163-1829/98/57~12!/7027~10!/$15.00
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use the calculated pseudo wave functions to compute
quasiparticle band structure of cubic zirconia with theGW
approximation. Our work is of particular theoretical impo
tance because it constitutes one of the firstGW calculations
for systems in whichd-electrons play an important role, an
it sheds light on the applicability of theGW approximation
to such systems. Successful first-principles quasiparticle
culations on transition-metal compounds have been p
formed only recently.9–12 Finally, we study the electronic
structure of an oxygen vacancy in cubic zirconia. Oxyg
vacancies are believed to be instrumental in the struct
stabilization of zirconia. They also make zirconia useful
an oxygen ion conductor.

II. CALCULATION OF STRUCTURAL PROPERTIES

Structural properties of ZrO2 are determined using
density-functional theory within the local-density approx
mation ~LDA !.13,14 We expand the valence pseudo wa
functions in a plane wave basis set up to a cutoff of 100
to obtain fully converged results. This corresponds to
proximately 16 000 plane waves for the monoclinic pha
which has the largest unit cell. Brillouin zone summatio
are carried out using a Monkhorst-Pack grid with ten, s
and twok points in the irreducible zone for the cubic, tetra
onal and monoclinic phases, respectively. The plane-w
cutoff and k-point sampling are sufficient for full conver
gence in the Hellman-Feynman forces and stress. Ato
coordinates and lattice parameters were varied until
forces and stress vanished. The structural minimization
carried out using a quasi-Newton method.15 A fully con-
verged, self-consistent relaxation of all the 13 structural
rameters of the monoclinic phase can be performed in
than 10 h on 32 processors of a Cray T3E.

Throughout this study we made use of the pseudopoten
approximation. The oxygen pseudopotentials are gener
using the Troullier-Martins scheme16 whereas the zirconium
is treated using Hamann-Schluter-Chiang potentials.17 For
7027 © 1998 The American Physical Society
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7028 57KRÁLIK, CHANG, AND LOUIE
oxygen we make the usual choice of including the six el
trons in theN52 shell as valence electrons. For zirconiu
all electrons in theN54 shell plus the 5s subshell in the
atomic configuration (4s24p64d25s2512 electrons! are in-
cluded among the valence bands. We have tried to reduc
number of valence electrons by only treating the 5s and 4d
as valence electrons, but this leads to unsatisfactory equ
rium lattice parameters for cubic ZrO2.

For structural calculations, we further convert the sem
local pseudopotentials described above to the fully nonlo
form of Kleinman and Bylander.18 The Kleinman-Bylander
~KB! form of the pseudopotentials is separable and he
allows considerable savings in computational effort. We ta
the d and p channels as the local potentials for zirconiu
and oxygen, respectively. With these choices, the pseud
tentials are transferable including the low-lying conducti
bands~see Table I!. For band structure andGW calculations,
we do not use the KB procedure because of the possibilit
encounteringghost states.19

The inclusion of 4s and 4p electrons in the valence she
of Zr is important for reasons other than their effect on
structural properties. Even though the 4d, 4s, and 4p atomic
energy levels are tens of eVs apart from each other, the
responding atomic wave functions strongly overlap~see Fig.
1!. As shown by Rohlfing, Kruger, and Pollmann,9 in a case
such as this, one does not obtain accurate quasiparticle e

TABLE I. Structural properties of hcp metallic Zr. Figures
parentheses give the percent error as compared to experimen
present pseudopotential LDA calculations with Ceperley-Ald
exchange-correlation@PP~CA!# ~present work! and all-electron lin-
earized augmented plane-wave LDA with Hedin-Lundqu
exchange-correlation@LAPW~HL!# ~from Ref. 33!. Volumes per
formula unit and lattice parameters are in atomic units. Experim
tal data are from Refs. 34 and 35.

PP~CA! LAPW~HL! Expt.

Volume 147.89(25.7%! 147.84(25.9%! 157.05
c/a 1.629~12.3%! 1.627~12.1%! 1.593
a 5.940(22.7%! 5.943(22.6%! 6.104
c 9.679(20.5%! 9.668(20.6%! 9.723

FIG. 1. Atomic wave functions of the 4 shell of the Zr atom.
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gies unless all of the strongly spatially overlapping orbit
are treated on an equal footing.

III. CALCULATION OF QUASIPARTICLE ENERGIES

In this section, we summarize the basic ideas of theGW
approximation for quasiparticle properties. TheGW approxi-
mation was first proposed by Hedin.5 In practice, we follow
the scheme for semiconductors, due to Hybertsen
Louie.6,7 The method is based on an approximate solution
the quasiparticle equation20

~T1Vext1Vh!Cnk~r !1E d3r 8S~r ,r 8;Enk!Cnk~r 8!

5EnkCnk~r !, ~1!

where T is the kinetic energy operator (2 1
2 ¹ r

2 in atomic
units!, Vext is the external~ionic! potential,Vh is the Hartree
potential due to the average Coulomb repulsion of the e
trons, andS is the self-energy operator.S is in general a
nonlocal, energy-dependent, non-Hermitian operator that
scribes exchange and correlation~dressing! effects on the
quasiparticle states. In addition, the non-Hermitian part oS
gives rise to a finite lifetime for the quasiparticles. Near t
Fermi level, however, lifetime effects can be, and, as us
are neglected in the interpretation of peak positions in
perimental excitation spectra.

The quasiparticle equation is similar to the familiar se
consistent field equation in the Kohn-Sham formulation
density-functional theory~DFT! ~Refs. 13,14!,

~T1Vext1Vh1Vxc!cnk~r !5enkcnk~r ! ~2!

if we set SLDA5d(r ,r 8)Vxc(r 8). While the Kohn-Sham ei-
genvaluesenk only have meaning as Lagrangian multiplier
and in particular cannot be interpreted exactly as excita
energies, the above analogy suggests thatenk can in fact be
considered as a first approximation to quasiparticle energ
~Similarly, one can consider the eigenvalues of the Hartr
Fock equation as approximate quasiparticle energies.!

It is natural then to try to obtain the true quasipartic
levels and wave functions perturbatively from the Koh
Sham ~or Hartree-Fock! eigenvalues and eigenfunction
Within this approach, the perturbation operator isH1
5S(E)2Vxc . Assuming for the moment that we knowS,
we can immediately write down the first-order result

Enk5enk1
^cnkuS~Enk!2VxcuCnk&

^cnkuCnk&
. ~3!

In practiceH1 is found to be virtually diagonal in the$cnk%
basis for semiconductors6 such as Si, Ge, CdS,9 and ZrO2, so
we in fact take

Cnk5cnk ~4!

and

Enk5enk1^cnkuS~Enk!2Vxcucnk&. ~5!

We next consider evaluating the operatorS. Following
Hybertsen and Louie,6 the operatorS(E) can be approxi-
mated in theGW approximation5 as

We
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S~r ,r 8;E!5 i E dv8

2p
e2 idvG~r ,r 8;E2v8!W~r ,r 8;v8!,

~6!

whered is a positive infinitesimal,G is our best available
Green’s function, andW is the best available screened Co
lomb interaction. BothG andW are evaluated with the LDA
wave functions. Accordingly,G is taken to the Green’s func
tion formed from the LDA orbitals:

G~r ,r 8,v!5(
nk

cnk~r !cnk* ~r 8!

v2Enk2 idnk
, ~7!

wherednk501 for Enk,m and dnk502 for Enk.m. The
enk are initially taken to be the LDA eigenvalues and a
subsequently updated upon repeated iterations of the
consistent equation Eq.~5!.

W(r ,r 8;v) is computed using RPA dielectric screening
v50, and then extended to finite frequencies using a ge
alized plasmon-pole model, as described by Hybertsen
Louie.6 Before we proceed, let us fix the Fourier transfo
convention for the spatial coordinates in a crystal to mea

f ~r ,r 8;v!5 (
q,G,G8

ei ~q1G!•r f GG8~q,v!e2 i ~q1G8!•r8, ~8!

whereq is a wave vector in the first Brillouin zone andG is
a reciprocal lattice vector. In terms of the LDA wave fun
tions, the RPA irreducible polarizability is given~in r ,t
space! by

P0~r ,t;r 8,t8!52 iG~r ,t;r 8,t81d!G~r 8,t8;r ,t !. ~9!

From this expression, the dielectric function~in q,v space!

eGG8~q,v!5dGG82vCoul~q1G!PGG8
0

~q,v! ~10!

can be obtained. The screened interaction is given by

WGG8~q,v!5eGG8
21

~q,v!vCoul~q1G8!. ~11!

The preceding discussion is general. In our implemen
tion, we make a further approximation and evaluateenk and
cnk within a pseudopotential DFT-LDA scheme. Th
pseudopotential approximation requires us to fix some of
contributions to the self-energy operator.

In order to understand the approximations resulting fr
the use of pseudopotentials, let us decomposeG into two
terms,G5Gc1Gv , whereGc only involves the core orbit-
als andGv involves the rest of the valence orbitals and t
conduction states. Similarly, the polarizabilityP can be de-
composed into parts involving virtual transitions from co
bands to conduction bands (Pc) and parts involving transi-
tions from valence to conduction bands (Pv). AssumingPc
!Pv we get

S5 iGcW1 iGvWvPcWv1 iGvWv . ~12!

The first term corresponds essentially to the core-valence
change energy, as noted by Phillips,21 and the second term i
a screened polarization potential due to the core. These
terms together correspond to a core-valence excha
correlation energy. The third term is the self-energy of
valence electrons.
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The first two terms of this equation are usually omitt
from the calculations, because Hybertsen and Louie6 have
found that their contributions to excitation energies diff
very little from the corresponding LDA values for bulk sil
con and germanium. For these cases, the pseudopote
was chosen in such a way that the core and valence elec
resided on different shells, thereby ensuring a relativ
small overlap between core and valence electrons. Howe
for the opposite case, i.e., when there is significant co
valence spatial overlap, the core-valence exchan
correlation contributions can be important, as Louie, Froy
and Cohen22 have pointed out in their work on the nonline
core correction forab initio pseudopotentials. Shirley, Zhu
and Louie23 have shown that in certain shallow core sem
conductors, core-valence exchange-correlation effects
change the gap by as much as 0.4 eV. In their work on C
Rohlfing, Kruger and Pollmann9 have also shown that whe
core and valence orbitals overlap, the contributions from
core-valence exchange-correlation are different in LDA a
in GW, respectively. Motivated by these observations,
have treated the 4s, 4p, 4d, and 5s electrons as valence
electrons for zirconium, and neglected the remaining co
valence exchange-correlation terms in the evaluation of q
siparticle energy differences.

IV. RESULTS AND DISCUSSION

A. Structural properties

Zirconia ~ZrO2) in its pure form and at zero pressure
monoclinic (m) up to 1170 °C, tetragonal (t) between 1170
and 2370 °C, cubic (c) between 2370 and 2706 °C, an
molten above.24 Dopants such as Y2O3, CaO, and MgO are
known to stabilize the cubic and tetragonal phases at ro
temperature. The dopants introduce substitutional impuri
at the zirconium sites and oxygen vacancies. At high te
peratures and high concentrations, the vacancies
mobile.25

The high temperaturec phase~space groupFm3m) is an
fcc lattice of zirconium atoms with oxygen atoms at the t
rahedral sites. Consequently, the oxygen atoms and the
conium atoms are tetrahedrally coordinated and octahed
coordinated, respectively, and the unit cell contains one
conium and two oxygen atoms. The cubic structure is fu
determined by the single lattice constant.

The intermediate temperaturet phase ~space group
P42 /nmc) can be derived from the cubic phase by displa
ing the oxygen atoms along thec axis of the tetragonal uni
cell. This displacement is accompanied by a readjustmen
the lattice parameters. The lattice vectors meet at ri
angles, with two of them equal in length. Thet phase is
therefore characterized by two lattice constants and the
placementdz of the oxygen atoms in the unit cell with re
spect to their cubic positions. The unit cell contains two fo
mula units of ZrO2. The mechanism of the cubic t
tetragonal phase transition is described in detail in Refs.
and 27.

The low temperature monoclinic phase of ZrO2 ~space
group P21 /c) is formed by further distorting the tetragon
structure. With the lattice vectors no longer at right angl
the zirconium atoms are only sevenfold coordinated in t
phase. There are two symmetry-inequivalent types of oxy
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7030 57KRÁLIK, CHANG, AND LOUIE
atoms, one threefold, the other fourfold coordinated. W
need 13 independent parameters to describe this struc
The data presented in Table II for the monoclinic phase c
respond to the second setting convention for monocl
crystals. The unit cell contains four formula units of ZrO2.

Table II summarizes the results of our structural stud
on the three phases of ZrO2. There is excellent agreemen
between the results of our pseudopotential plane w
method and those of the all-electron FLAPW method.28 The
theoretical lattice parameters are also in excellent agreem
with experiment. The success of the pseudopotential tr
ment is in fact not surprising given the similar success of
ab initio Hartree-Fock treatment of zirconia within the effe
tive core potential~ECP! approximation.25,4

Table III shows the total energies of the pure phases.
energies quoted are cohesive energies, i.e., differences o
tal energies per molecular unit and the energies of the c
stituent pseudoatoms. We find that the ordering of the co
sive energies follows the one suggested by their tempera
ordering:

Em,Et,Ec . ~13!

TABLE II. Structural parameters of the phases ZrO2. The full-
potential linearized augmented plane-wave all-electron DFT-L
~FLAPW! results are from Ref. 28 and the plane-wave pseudo
tential DFT-LDA ~PP! results are from the present work. The e
perimental results are taken from Ref. 25. The deviation from
experimental result, expressed as a percentage, is given in pare
ses. Volumes per formula unit and lattice parameters are in ato
units. Internal coordinates are given in terms of the lattice vect
In the tetragonal phase,dz is the displacement of the oxygen alon
the z axis in units ofc with respect to the ideal cubic position.

PP~this work! FLAPW Expt.

Cubic ZrO2

Volume 215.31(23.2%! 217.79(22.1%! 222.48
a 9.514(21.1%! 9.551(20.7%! 9.619

Tetragonal ZrO2
Volume 218.69(21.9%! 218.77(21.9%! 222.96
a 9.523(20.2%! 9.541~10.0%! 9.543
c 9.646(21.5%! 9.613(21.8%! 9.793
dz 0.0423(226.3%! 0.029(249.5%! 0.0574

Monoclinic ZrO2

Volume 230.51(23.0%! 237.71
a 9.611(21.3%! 9.734
b 9.841(20.0%! 9.849
c 9.876(21.7%! 10.048
g 99.21(20.0%! 99.23
xZr 0.2779~10.9%! 0.2754
yZr 0.0418~15.8%! 0.0395
zZr 0.2099~10.7%! 0.2083
xO(1) 0.0766~19.4%! 0.0700
yO(1) 0.3488~15.1%! 0.3317
zO(1) 0.3311(23.9%! 0.3447
xO(2) 0.4471(20.5%! 0.4496
yO(2) 0.7588(20.3%! 0.7569
zO(2) 0.4830(20.8%! 0.4792
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Our calculated values are in fact in excellent quantitat
agreement with experiment. The experimental values for
energy differences were derived from measured enthalpy
ferences at the phase transition temperature.29

B. Electronic properties

1. Cubic phase

We first examine the electronic structure of the cub
phase within our pseudopotential LDA method. We perfo
the electronic structure calculations at the experimental
tice parameters. Figure 2 shows the total and partial den
of states for this phase. The partial density of states~DOS! at
energyE at atomX with angular momentuml ,m is obtained
by examining the wave functions with energy eigenvalueE.
The partial density of statesDXl(E) at atomX and angular
momentuml is given by

DXl~E!5(
m

(
nk

occ

z^u~ ur2rXu,r c!Ylm~q,c!ucnk& z2

3d~enk2E!, ~14!

whererX denotes the position of the atom at which the p
tial density of states is computed, andu(ur2rXu,r c) is a
step function equal to unity for values ofur2rXu less than the
radius cutoffr c and zero otherwise. The angular decompo
tion shows that the top of the valence band is formed from
2p orbitals and the semicore bands, in order of decreas
energy, are O 2s and Zr 4p bands. It is interesting to note

-

e
the-
ic
s.

TABLE III. Cohesive energies(Ecoh) of the pure phases of ZrO2
given in Rydbergs/ZrO2 . The third column shows the total energ
difference between the phases and the cubic phase. The fourth
umn contains the corresponding experimental values from Ref.

Phase Ecoh Ec2Et,m Expt.

cubic 1.5331
tetragonal 1.5364 0.0033 0.0042
monoclinic 1.5406 0.0075 0.0088

FIG. 2. Angular resolved local density of states of cubic zirc
nia. The zero of thex axis is the Fermi level.
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that there are no Zrs- andd-character states in the valenc
bands~except for the deep semicore Zr 4s states, which are
not shown!. This suggests a nearly complete transfer of
Zr 5s and 4d electrons to the oxygen atoms in the crysta

For the GW calculation, the LDA wave functionscnk ,
and energiesenk are obtained using semilocal pseudopote
tials, i.e., not the fully separable Kleinman-Bylander pseu
potentials. This comes at a performance cost, but gives us
advantage of avoiding the issue of ghost states in the c
duction band. Bands up to energies 250 eV above the fun
mental gap are included in the summation over conduc
bands. The wave functions are expanded up to a plane-w
cutoff of 60 Ry. The quasiparticle energies and the gaps w
fully converged at this cutoff.~We find that at 40 Ry the
quasiparticle energies are converged to 0.2 eV, and the
are systematically underestimated by 0.15 eV.! The dielectric
constant is computed to a reciprocal space cutoff of 4 a.

Figure 3 shows the quasiparticle band structure of cu
zirconia. The self-energies of states at generick points are
obtained by linear interpolation of the calculated values
nearby high-symmetry points of the Brillouin zone. See R
3 for the notation for all of the high-symmetry points in th
Brillouin zones for the cubic, tetragonal, and monoclin
phases. We observe, due to the self-energy correction, a
ering and widening of the O 2p valence band and an ap
proximate constant ‘‘scissors’’ shift upward of the condu
tion bands. The minimum gap is indirect fromX to G in both
the LDA andGW calculations.

Figure 4 shows the quasiparticle corrections to the LD
eigenvalues for the cubic phase. The corrections to the
lence band follows very closely the trend seen in ot
semiconductors.6 There is also a lowering of energy. How
ever, this may be due to inconsistent comparison of Cepe
Alder exchange correlation withGW exchange-correlation
The lowest conduction band is corrected uniformly over
Brillouin zone with a state dependence of about 0.1 e
Higher conduction bands show nonuniform state-depend
corrections with up to about 1 eV variation over the Brillou
zone.

In Fig. 5, we compare our theoretical valence band d
sity of states with the x-ray photoemission spectra~XPS!
measured by Frenchet al.3 The experimental results show

FIG. 3. Band structure of cubic zirconia. Continuous lines re
resent the LDA band structure, while dots show theGW quasipar-
ticle bands. The two sets of bands are aligned at the top of
valence band, which was set to 0.
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are for a 9.5 mol % Y2O3-stabilized single crystal cubic
ZrO2 sample. While pure cubic zirconia has an experimen
lattice constant~obtained from extrapolation from high
temperature values! of 9.619 a.u., the stabilized sample ha
a59.719 a.u. Repeating the calculation at the larger lat
constant yields a gap that is 0.1 eV smaller and an Op
valence band that is 0.3 eV narrower. The theoretical D
curves shown in Fig. 5, calculated for a pure sample aa
59.619, are broadened by the experimental resolution of
eV.

In the energy range shown, the three main features in
theoretical curve are the O 2p valence and the O 2s and Zr
4p semicore bands. TheGW correction proves to be very
important in obtaining the correct peak positions for t
semicore states. In particular, a shift of; 2 eV is observed
for the O 2s peak. The valence bandwidth is slightly in
creased by the quasiparticle correction, and agrees well
the experiment. The experimental feature marked Y 4p has
been identified as impurity related by examining spectra w
different dopant concentrations. Based on our calculatio
we are unable to identify features A and B with any structu
in the electronic structure of pure cubic ZrO2. Thus we pro-
pose that they are also defect related.

-

e
FIG. 4. Quasiparticle correction versus LDA band energy

cubic zirconia. The zero of the energy is set at the top of the vale
band.

FIG. 5. Comparison of calculated and experimental valence d
sity of states~DOS!. The experimental values~in arbitrary units! are
from the XPS measurements of Ref. 3. The calculated densit
states are given in units of states/unit cell/spin/eV.
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7032 57KRÁLIK, CHANG, AND LOUIE
2. Tetragonal and monoclinic phases

Performing a fully convergedGW calculation on the te-
tragonal and monoclinic phases of zirconia would be
expensive computationally. Instead, we only compute
LDA band structure for these phases~at the experimenta
structure! and use theGW self-energy corrections obtaine
in the cubic phase to correct the LDA eigenvalues. In t
scheme, we assume that for all phases of ZrO2 the quasipar-
ticle correction of the energy of any state is given by t
interpolation curves in Fig. 4. All states at the same ene
are treated as having the sameGW quasiparticle correction
which amounts to neglectingk dependence ofS2Vxc . This
approximation reproduces the quasiparticle correction to
ter than 0.05 eV accuracy near the gap~see Fig. 4! in the
cubic phase. Test calculations in which we compare the
terpolation formula with the exactGW results for the tetrag-
onal phase at a lower, computationally feasible cutoff, c
firm the applicability of this approximation~see Table IV!.

Figures 6 and 7 show theGW quasiparticle band struc
tures of the tetragonal and monoclinic phases, respectiv

TABLE IV. Valence band maxima~VBM ! and conduction band
minima ~CBM! of tetragonal ZrO2 at selected high-symmetr
points of the Brillouin zone. The calculations were carried out at
Ry plane wave cutoff. TheGW estimate column shows the calcu
lation of the tetragonal bandgap using the energy-dependentGW
correction obtained from a 40 Ry calculation in the cubic pha
The LDA energy of the VBM at theZ point has been set to zero

k point LDA~40 Ry! GW~40 Ry! GW estimate

G VBM 20.03 21.28 21.23
CBM 4.01 5.12 5.06

Z VBM 0.00 21.19 21.20
CBM 4.60 5.79 5.65

R VBM 20.82 22.12 22.09
CBM 4.55 5.68 5.60

X VBM 20.03 21.26 21.23
CBM 4.44 5.51 5.49

M VBM 20.56 21.78 21.81
CBM 5.19 6.45 6.24

FIG. 6. GW quasiparticle band structure of tetragonal zircon
~See text.!
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Both phases are wide bandgap semiconductors, with an i
rect fundamental gap. The minimum of the conduction ba
is atG for both phases, and the minimum optical~direct! gap
is also located at the zone center. The valence band max
fall on the S symmetry line~betweenG and M ) for the
tetragonal phase and betweenG and X for the monoclinic
phase.

3. Band gaps and bandwidths

We present our calculated minimum bandgaps and
lence bandwidths in Table V. Our LDA values are in reaso
able overall agreement with the earlier results of Zandieh
dem, Murray, and Ching.30 Since these 1988 results we
computed non-self-consistently for the tetragonal and mo
clinic phases, we do not expect them to agree closely w
our self-consistent results.

Both the bandwidths and the bandgaps are systematic
overestimated in the Hartree-Fock~HF! calculations of Or-
landoet al.4 This is not surprising, as it is well known tha
HF calculations systematically overestimate and LDA cal
lations underestimate the fundamental gap of semicond
tors. Indeed, ourGW results, which agree well with experi
ment, are between the LDA and HF values for both t
fundamental gap and the valence bandwidth.

Table VI shows the gaps as measured by vacuum u
violet ~VUV ! spectroscopy.3 These gaps were derived from
reflectance spectra through Kramers-Kronig31 analysis. The

0

.

TABLE V. Minimum band gaps and valence bandwidths~in
eV! of ZrO2 compared to otherab initio calculations.

This work
Phase LDA GW HFa LCAOb

Band gap cubic 3.25 5.55 12.3 3.84
tetragonal 4.10 6.40 13.3 4.11
monoclinic 3.12 5.42 4.51

Valence bandwidth cubic 6.1 6.5 7.97 5.90
tetragonal 5.4 5.9 7.14 5.48
monoclinic 5.2 5.7 4.97

aAb initio Hartree-Fock calculation from Ref. 4.
bAb initio orthogonalized LCAO DFT-LDA calculation from Ref
30. Only the cubic phase was computed self-consistently.

.

FIG. 7. GW quasiparticle band structure of monoclinic zirconi
~See text.!
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gaps extracted are sensitive to the details of the fitting p
cedure used. The range of experimental values indicate
Table VI corresponds to two different fits of the reflectan
spectra, hence we estimate the experimental uncertainty
as much as 1 eV.

It has also been suggested in Ref. 3 that gaps derived f
VUV reflectance spectroscopy are too high. This observa
is confirmed by photocurrent generation spectroscopy.32 The
latter method gives a gap value of 4.8 eV for anodic th
films of ZrO2 of undetermined structure. While surface a
defect effects could be important in the interpretation of t
latter measurement, the results of the photocurrent exp
ment suggest that the VUV data might be too high.

Table VI also shows LDA andGW values for the gaps
We find that theGW approximation improves agreement b
tween theory and experiment considerably. While theGW
gaps are within the experimental uncertainty of the measu
values, differences in the gap value for the different pha
are not resolved experimentally.

V. OXYGEN VACANCY

In practical applications, zirconia is typically doped
such a way as to introduce oxygen vacancies into the cry
structure. This is because not only are oxygen vacancies
sponsible for the oxygen-ion conducting properties of t
material, dopants also endow zirconia with improved m
chanical properties.1,2

To study the nature of oxygen vacancies in cubic zircon
we perform calculations on a supercell of seven oxygen
oms and four zirconium atoms, obtained by removing
oxygen atom from the conventional cell of cubic zircon
shown in Fig. 8. Such a supercell consists of four form
units of ZrO2 with one less oxygen atom and is four tim
the volume of the primitive cell of pure, cubic zirconia. W
allow the internal coordinates of this supercell to relax wh
keeping the cell volume fixed at the experimental pure b
cubic volume. The initial configuration of the relaxation
obtained by taking the above supercell and distorting
asymmetrically. We find that the crystal relaxes to a symm
ric structure, with the Zr atoms moving a distance of 0.0
Å directly away from the vacancy. The LDA relaxation
were carried out with a plane wave cutoff of 100 Ry and
23232 Monkhorst-Pack grid in the Brillouin zone.

Figure 9 shows the LDA band structure of the superc

TABLE VI. Minimum band gaps of ZrO2 compared to experi-
ments.

Phase LDA GW Expt.

cubic direct 3.65 5.81 6.1–7.08a

indirect 3.25 5.55

tetragonal direct 4.26 6.57 5.78–6.62b

indirect 4.10 6.40

monoclinic direct 3.16 5.46 5.83–7.09c

indirect 3.12 5.42

aCubic ZrO2:9.5 mol% Y2O3, from Ref. 3.
bTetragonal ZrO2:4.5 mol% Y2O3, from Ref. 3.
cMonoclinic ZrO2, from Ref. 3.
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The vacancy state, indicated by the dashed line, is sin
degenerate, fully occupied, and well separated from both
valence bands and the conduction bands. Its disper
throughout the Brillouin zone is approximately 1 eV, ind
cating an appreciable vacancy-vacancy interaction. We m
the following observations to explain the above vacan
band structure in a tight-binding picture. First, by removi
an oxygen atom, we remove the O 2s- and 2p-like orbitals
previously present at the vacancy site. Therefore, if in
folded Brillouin zone scheme for the pure crystal, there
~833! O 2p and~831! O 2s filled bands, we expect there t
be ~733! O 2p and ~731! O 1s filled bands in the crysta
supercell with oxygen vacancy, which is precisely the res
we obtain. Second, in the crystal, the O atoms borrow
proximately two electrons from the surrounding four Zr a
oms. Thus, by removing an oxygen atom, we remove
electrons, leaving two electrons behind which occupy

FIG. 8. Supercell used in the vacancy calculation.

FIG. 9. LDA band structure of cubic zirconia with an oxyge
vacancy in a cubic supercell containing four formula units. T
dashed band is composed of states localized at the vacancy s
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7034 57KRÁLIK, CHANG, AND LOUIE
singly degenerate vacancy state. The two electrons w
once filled the O 2p-like states in the pure crystal, and whic
now fill the newly created vacancy band, can be though
as moving back to the four surrounding Zr atoms and oc
pying a linear combination of orbitals on the Zr atoms. Sin
the vacancy state atG belongs to theA1 representation of the
tetragonal symmetry of the vacancy site, we can concl
that the vacancy state is asymmetricsuperposition of these
four orbitals.

The vacancy state is formed as a symmetric superpos
of in particular the 4d orbitals centered at the four Zr atom
surrounding the vacancy, as shown in Fig. 10. There are
reasons that lead to this conclusion. First, the partial den
of states plot given in Fig. 11 shows that the vacancy s
has very little Zrs and p character. Second, a plot of th
square of the vacancy wave function~Fig. 12! shows the
characteristicdz2 shape around the Zr atoms. This plot al
reveals that the vacancy state is indeed mostly localized
the vacancy site.

FIG. 10. Schematic representation of the Zrd orbitals that give
the dominant contribution to the vacancy state.

FIG. 11. Partial density of states of cubic ZrO2 with an oxygen
vacancy.
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In order to extract the energy of the defect level and s
tract the effect of the vacancy-vacancy interaction, we mo
the vacancy band obtained in the supercell approach wi
tight-binding model that includes the interaction of near
and second-nearest neighbor vacancy sites. We canno
glect the second-nearest neighbor vacancies because the
separated by only four bonds, the same number of bonds
separate the nearest neighbor vacancy sites. We neglec
teractions between third-nearest neighbors in our tig
binding analysis since these are separated by six bonds

In our supercell scheme the vacancy sites form a sim
cubic lattice. Assuming first and second nearest neighb
and a singles-like (A1) state at the simple cubic sites, w
can model the vacancy-state dispersion by

E~k!5E01D1@cos~kxa!1cos~kya!1cos~kza!#

1D2@cos~kxa!cos~kya!1cos~kya!cos~kza!

1cos~kza!cos~kxa!#, ~15!

where E0, D1, and D2 are fitting parameters anda is the
lattice constant of the supercell. It is possible to fit this tig
binding dispersion curve to the LDA energies of the vacan
band to better than 0.08 eV. The fact that the tight-bind
dispersion curve agrees well with the LDA results shows t
the vacancy-vacancy interaction is sufficiently weak a
therefore that the supercell approximation is a sensible
proach to the problem of determining the energy of an i
lated vacancy state. The parameterE0 is our estimate of the
position of the vacancy level in the dilute limit.

FIG. 12. Isosurface of the square of the vacancy wave func
superimposed on a 23231 ball and stick model of the atoms an
bonds. The four large balloon-shaped structures are localized o
vacancy sites and form a large part of the isosurface. The large
adjacent to the rings and the rings themselves comprise the rem
ing part of the vacancy isosurface. The balls surrounded by ri
are the zirconium atoms, and the tetrahedrally coordinated balls
the oxygen atoms.
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We performed an LDA and a quasiparticle calculation
the vacancy band structure at the plane-wave cutoff of 40
and a 23232 Monkhorst-Packk-point grid. As we have
seen inGW calculations for the pure cubic phase, this cut
gives eigenvalues converged to better than 0.2 eV. U
performing the tight-binding analysis outlined above, t
quasiparticle vacancy level is found to be 2.1 eV below
conduction band minimum. The vacancy level, as with
bulk valence-band conduction bands, is shifted down. Thi
expected, since the vacancy level is occupied.

The applicability of our calculation of the oxygen vacan
state to realistic systems is limited by the fact that, in rea
tic doped zirconia, the oxygen vacancies are accompanie
substitutional impurities such as Ca or Y atoms on Zr sit
Indeed, if each oxygen vacancy were accompanied by
divalent~such as Ca or Mg! or two trivalent~such as Y! ions
replacing Zr ions, the vacancy level would not be occupi
barring changes to the band structure. Calculations involv
supercells with such impurities included are under way
assess their effect.

We also computed the quasiparticle corrections for sta
at high-symmetry points in the Brillouin zone for bands ne
the Fermi level for the vacancy supercell system. Figure
shows the quasiparticle correction versus the LDA eigen
ues. The bulk states exhibit quasiparticle corrections that

FIG. 13. GW quasiparticle corrections to the LDA energies f
zirconia with an oxygen vacancy. The empty square shows the
sition of the isolated vacancy obtained from tight-binding analy
~see text!.
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slightly smaller than those of the bulk cubic phase. The b
valence to conduction band gap in this periodic array of
cancies is found to be 5.2 eV.

VI. CONCLUSION

In conclusion, we have performed full structural rela
ations of the cubic, tetragonal, and monoclinic phases of
conia within a plane-wave pseudopotential DFT-LD
method. We find excellent agreement for the structural
rameters with experimental measurements and otherab initio
calculations. We find that the relaxed crystals do have
expected total energy ordering, and the energy differen
between different phases agree well with experiment.

We also performed a quasiparticle electronic-struct
calculation on zirconia. TheGW approximation employed
here opens up the LDA gaps by approximately 2.3
throughout the Brillouin zone. We predict the fundamen
gap of pure cubic, tetragonal, and monoclinic zirconia to
5.55, 6.40, and 5.42 eV, respectively. The singly degene
occupied oxygen vacancy level in the cubic phase is foun
be 2.1 eV below the conduction band minimum.

Our studies presented here form the basis of a furt
investigation of the electronic properties of defects in zirc
nia, which are known to be responsible for the stabilizat
of the cubic and tetragonal phases at room temperature
particular, supercell calculations on impurity-doped syste
is envisioned.GW calculations on such systems could pr
vide additional important information concerning th
oxygen-ion conducting and catalytic properties of defe
stabilized cubic zirconia.
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